927 resultados para Phenotypic plasticity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim To measure latitude-related body size variation in field-collected Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) individuals and to conduct common-garden experiments to determine whether such variation is due to phenotypic plasticity or local adaptation. Location Four collection sites from the east coast of Australia were selected for our present field collections: Canberra (latitude 35°19' S), Bangalow (latitude 28°43' S), Beerburrum (latitude 26°58' S) and Lowmead (latitude 24°29' S). Museum specimens collected over the past 100 years and covering the same geographical area as the present field collections came from one state, one national and one private collection. Methods Body size (pronotum width) was measured for 118 field-collected beetles and 302 specimens from collections. We then reared larvae from the latitudinal extremes (Canberra and Lowmead) to determine whether the size cline was the result of phenotypic plasticity or evolved differences (= local adaptation) between sites. Results Beetles decreased in size with increasing latitude, representing a converse Bergmann cline. A decrease in developmental temperature produced larger adults for both Lowmead (low latitude) and Canberra (high latitude) individuals, and those from Lowmead were larger than those from Canberra when reared under identical conditions. Main conclusions The converse Bergmann cline in P. atomaria is likely to be the result of local adaptation to season length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive phenotypic plasticity, the ability of an organism to change its phenotype to match local environments, is increasingly recognized for its contribution to evolution. However, few empirical studies have explored the molecular basis of plastic traits. The East African cichlid fish Astatoreochromis alluaudi displays adaptive phenotypic plasticity in its pharyngeal jaw apparatus, a structure that is widely seen as an evolutionary key innovation that has contributed to the remarkable diversity of cichlid fishes. It has previously been shown that in response to different diets, the pharyngeal jaws change their size, shape and dentition: hard diets induce an adaptive robust molariform tooth phenotype with short jaws and strong internal bone structures, while soft diets induce a gracile papilliform tooth phenotype with elongated jaws and slender internal bone structures. To gain insight into the molecular underpinnings of these adaptations and enable future investigations of the role that phenotypic plasticity plays during the formation of adaptive radiations, the transcriptomes of the two divergent jaw phenotypes were examined. Our study identified a total of 187 genes whose expression differs in response to hard and soft diets, including immediate early genes, extracellular matrix genes and inflammatory factors. Transcriptome results are interpreted in light of expression of candidate genesmarkers for tooth size and shape, bone cells and mechanically sensitive pathways. This study opens up new avenues of research at new levels of biological organization into the roles of phenotypic plasticity during speciation and radiation of cichlid fishes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By “phenotypic plasticity” we refer to the capacity of a genotype to exhibit different phenotypes, whether in the same or in different environments. We have previously demonstrated that phenotypic plasticity can improve the degree of adaptation achieved via natural selection (Behera & Nanjundiah, 1995). That result was obtained from a genetic algorithm model of haploid genotypes (idealized as one-dimensional strings of genes) evolving in a fixed environment. Here, the dynamics of evolution is examined under conditions of a cyclically varying environment. We find that the rate of evolution, as well as the extent of adaptation (as measured by mean population fitness) is lowered because of environmental cycling. The decrease is adaptation caused by a varying environment can, however, be partly or wholly compensated by an increase in the degree of plasticity that a genotype is capable of. Also, the reduction of population fitness caused by a variable environment can be partially offset by decreasing the total number of genetic loci. We conjecture that an increase in genome size may have been among the factors responsible for the evolution of phenotypic plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immobile plants and immobile modular animals outlive unitary animals. This paper discusses competing but not necessarily mutually exclusive theories to explain this extreme longevity, especially from the perspective of phenotypic plasticity. Stem cell immortality, vascular autonomy, and epicormic branching are some important features of the phenotypic plasticity of plants that contribute to their longevity. Monocarpy versus polycarpy can also influence the kind of senescent processes experienced by plants. How density-dependent phenomena affecting the establishment of juveniles in these immobile organisms can influence the evolution of senescence, and consequently longevity, is reviewed and discussed. Whether climate change scenarios will favour long-lived or short-lived organisms, with their attendant levels of plasticity, is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain size and architecture exhibit great evolutionary and ontogenetic variation. Yet, studies on population variation (within a single species) in brain size and architecture, or in brain plasticity induced by ecologically relevant biotic factors have been largely overlooked. Here, I address the following questions: (i) do locally adapted populations differ in brain size and architecture, (ii) can the biotic environment induce brain plasticity, and (iii) do locally adapted populations differ in levels of brain plasticity? In the first two chapters I report large variation in both absolute and relative brain size, as well as in the relative sizes of brain parts, among divergent nine-spined stickleback (Pungitius pungitius) populations. Some traits show habitat-dependent divergence, implying natural selection being responsible for the observed patterns. Namely, marine sticklebacks have relatively larger bulbi olfactorii (chemosensory centre) and telencephala (involved in learning) than pond sticklebacks. Further, I demonstrate the importance of common garden studies in drawing firm evolutionary conclusions. In the following three chapters I show how the social environment and perceived predation risk shapes brain development. In common frog (Rana temporaria) tadpoles, I demonstrate that under the highest per capita predation risk, tadpoles develop smaller brains than in less risky situations, while high tadpole density results in enlarged tectum opticum (visual brain centre). Visual contact with conspecifics induces enlarged tecta optica in nine-spined sticklebacks, whereas when only olfactory cues from conspecifics are available, bulbus olfactorius become enlarged.Perceived predation risk results in smaller hypothalami (complex function) in sticklebacks. Further, group-living has a negative effect on relative brain size in the competition-adapted pond sticklebacks, but not in the predation-adapted marine sticklebacks. Perceived predation risk induces enlargement of bulbus olfactorius in pond sticklebacks, but not in marine sticklebacks who have larger bulbi olfactorii than pond fish regardless of predation. In sum, my studies demonstrate how applying a microevolutionary approach can help us to understand the enormous variation observed in the brains of wild animals a point-of-view which I high-light in the closing review chapter of my thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenotypic plasticity widely exists in the external morphology of animals as well as the internal traits of organs. In the present study, we studied the gut length plasticity of planktivorous filter-feeding silver carp under different food resources in large-net cage experiments in Meiliang Bay of Lake Taihu in 2004 and 2005. There was a significant difference in stocking density between these 2 years. Under a low stocking density and abundant food resources, silver carp increased their energy intake by feeding on more zooplankton. Meanwhile, silver carp adjusted their gut length to match the digestive requirements of food when exposed to different food resources. In the main growth seasons (from April to October), silver carp significantly increased their relative gut length when feeding on more phytoplankton in 2005 (p < 0.01, 9.23 +/- 1.80 in 2004 and 10.77 +/- 2.05 in 2005, respectively). There was a nearly significant negative correlation between zooplankton proportion in the diet and the relative gut length when silver carp were stocked in a high density (p = 0.112). It appears that silver carp might have evolved plasticity to change their gut length rapidly to facilitate efficient utilization of food resources. Such resource polymorphisms in the gut may be a good indication of temporal adaptation to resource conditions. Our work provided field evidence for understanding the functional basis of resource polymorphisms and the evolution of phenotypic plasticity in planktivorous filter-feeding fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apostichopus japonicus is a common sea cucumber that undergoes seasonal inactivity phases and ceases feeding during the summer months. We used this sea cucumber species as a model in which to examine phenotypic plasticity of the digestive tract in response to food deprivation. We measured the body mass, gross gut morphology and digestive enzyme activities of A. japonicus before, during, and after the period of inactivity to examine the effects of food deprivation on the gut structure and function of this animal. Individuals were sampled semi-monthly from June to November (10 sampling intervals over 178 days) across temperature changes of more than 18 degrees C. On 5 September, which represented the peak of inactivity and lack of feeding, A. japonicus decreased its body mass, gut mass and gut length by 50%, 85%, and 70%, respectively, in comparison to values for these parameters preceding the inactive period. The activities of amylase, cellulase and lipase decreased by 77%, 98%, and 35% respectively, in comparison to mean values for these enzymes in June, whereas pepsin activity increased two-fold (luring the inactive phase. Alginase and trypsin activities were variable and did not change significantly across the 178-day experiment. With the exception of amylase and cellulase, all body size indices and digestive enzyme activities recovered and even surpassed the mean values preceding the inactive phase during the latter part of the experiment (October-November). Principal Component Analysis (PCA) utilizing the digestive enzyme activity and body size index data divided the physiological state of this cucumber into four phases: an active stage, prophase of inactivity peak inactivity, and a reversion phase. These phases are all consistent with previously suggested life stages for this species, but our data provide more defined characteristics of each phase. A. japonicus clearly exhibits phenotypic plasticity (or life-cycle staging) of the digestive tract during its annual inactive period. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we analyzed a mathematical model of algal-grazer dynamics, including the effect of colony formation, which is an example of phenotypic plasticity. The model consists of three variables, which correspond to the biomasses of unicellular algae, colonial algae, and herbivorous zooplankton. Among these organisms, colonial algae are the main components of algal blooms. This aquatic system has two stable attractors, which can be identified as a zooplankton-dominated (ZD) state and an algal-dominated (AD) state, respectively. Assuming that the handling time of zooplankton on colonial algae increases with the colonial algae biomass, we discovered that bistability can occur within the model system. The applicability of alternative stable states in algae-grazer dynamics as a framework for explaining the algal blooms in real lake ecosystems, thus, seems to depend on whether the assumption mentioned above is met in natural circumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sexually selected traits are shaped by an interaction between sexual selection and other natural selection pressures in the environment. However, there is little understanding of how recent anthropogenic environmental change affects the elaboration of sexually selected traits. Most sexually selected traits are complex displays comprising multiple components that interact in a functional way, thereby affecting overall trait expression. To understand how environmental change may shape the expression of sexually selected traits, we have to consider not only (i) the phenotypic plasticity of individual components of traits but also their (ii) phenotypic integration, that is, the correlations among trait components, as well as (iii) plasticity integration, that is, the correlations among the plasticities of trait components. Here, we show that background noise is a considerable pressure in shaping a sexually selected multicomponent acoustic signal, bird song. We compared singing behavior of European robins (Erithacus rubecula) in territories that differed in levels of anthropogenic noise and conducted noise-exposure experiments to test if behavioral plasticity caused immediate changes in song components, for example, minimum frequency, song complexity, and song length. We found that song components differed in their plasticity to background noise and that plasticity integration between components may further restrict the elaboration of song. Thus, the altered expression of song components under noise exposure leads to increased phenotypic integration, which is linked with reduced song complexity. Our findings demonstrate that plasticity integration restricts the elaboration of a sexually selected trait, which raises the question of how changing environments may modify sexual selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O conhecimento de mecanismos de genómica funcional tem sido maioritariamente adquirido pela utilização de organismos modelo que são mantidos em condições laboratoriais. Contudo, estes organismos não reflectem as respostas a alterações ambientais. Por outro lado, várias espécies, ecologicamente bem estudadas, reflectem bem as interacções entre genes e ambiente mas que, das quais não existem recursos genéticos disponíveis. O imposex, caracterizado pela superimposição de caracteres sexuais masculinos em fêmeas, é induzido pelo tributilestanho (TBT) e trifenilestanho (TPT) e representa um dos melhores exemplos de disrupção endócrina com causas antropogénicas no ambiente aquático. Com o intuito de elucidar as bases moleculares deste fenómeno, procedeu-se à combinação das metodologias de pirosequenciação (sequenciação 454 da Roche) e microarrays (Agilent 4*180K) de forma a contribuir para um melhor conhecimento desta interacção gene-ambiente no gastrópode Nucella lapillus, uma espécie sentinela para imposex. O trancriptoma de N. lapillus foi sequenciado, reconstruído e anotado e posteriormente utilizado para a produção de um “array” de nucleótidos. Este array foi então utilizado para explorar níveis de expressão génica em resposta à contaminação por TBT. Os resultados obtidos confirmaram as hipóteses anteriormente propostas (esteróidica, neuroendócrina, retinóica) e adicionalmente revelou a existência de potenciais novos mecanismos envolvidos no fenómeno imposex. Evidência para alvos moleculares de disrupção endócrina não relacionados com funções reprodutoras, tais como, sistema imunitário, apoptose e supressores de tumores, foram identificados. Apesar disso, tendo em conta a forte componente reprodutiva do imposex, esta componente funcional foi a mais explorada. Assim, factores de transcrição e receptores nucleares lipofílicos, funções mitocondriais e actividade de transporte celular envolvidos na diferenciação de géneros estão na base de potenciais novos mecanismos associados ao imposex em N. lapillus. Em particular, foi identificado como estando sobre-expresso, um possível homólogo do receptor nuclear “peroxisome proliferator-activated receptor gamma” (PPARγ), cuja função na indução de imposex foi confirmada experimentalmente in vivo após injecção dos animais com Rosiglitazone, um conhecido ligando de PPARγ em vertebrados. De uma forma geral, os resultados obtidos mostram que o fenómeno imposex é um mecanismo complexo, que possivelmente envolve a cascata de sinalização envolvendo o receptor retinoid X (RXR):PPARγ “heterodimer” que, até à data não foi descrito em invertebrados. Adicionalmente, os resultados obtidos apontam para alguma conservação de mecanismos de acção envolvidos na disrupção endócrina em invertebrados e vertebrados. Finalmente, a informação molecular produzida e as ferramentas moleculares desenvolvidas contribuem de forma significativa para um melhor conhecimento do fenómeno imposex e constituem importantes recursos para a continuação da investigação deste fenómeno e, adicionalmente, poderão vir a ser aplicadas no estudo de outras respostas a alterações ambientais usando N. lapillus como organismo modelo. Neste sentido, N. lapillus foi também utilizada para explorar a adaptação na morfologia da concha em resposta a alterações naturais induzidas por acção das ondas e pelo risco de predação por caranguejos. O contributo da componente genética, plástica e da sua interacção para a expressão fenotípica é crucial para compreender a evolução de caracteres adaptativos a ambientes heterogéneos. A contribuição destes factores na morfologia da concha de N. lapillus foi explorada recorrendo a transplantes recíprocos e experiências laboratoriais em ambiente comum (com e sem influência de predação) e complementada com análises genéticas, utilizando juvenis provenientes de locais representativos de costas expostas e abrigadas da acção das ondas. As populações estudadas são diferentes geneticamente mas possuem o mesmo cariótipo. Adicionalmente, análises morfométricas revelaram plasticidade da morfologia da concha em ambas as direcções dos transplantes recíprocos e também a retenção parcial, em ambiente comum, da forma da concha nos indivíduos da F2, indicando uma correlação positiva (co-gradiente) entre heritabilidade e plasticidade. A presença de estímulos de predação por caranguejos estimulou a produção de conchas com labros mais grossos, de forma mais evidente em animais recolhidos de costas expostas e também provocou alterações na forma da concha em animais desta proveniência. Estes dados sugerem contra-gradiente em alterações provocadas por predação na morfologia da concha, na produção de labros mais grossos e em níveis de crescimento. O estudo das interacções gene-ambiente descritas acima demonstram a actual possibilidade de produzir recursos e conhecimento genómico numa espécie bem caracterizada ecologicamente mas com limitada informação genómica. Estes recursos permitem um maior conhecimento biológico desta espécie e abrirão novas oportunidades de investigação, que até aqui seriam impossíveis de abordar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been predicted on theorerical grounds (Sibly & Calow, 1983; Taylor & Williams, 1984) that optimal offspring size should be highly sensitive to juvenile growth and survival rates. To test such models, genetically-identical individuals of Simicephalus vetulus were reared at different temperatures and monitored for offspring size and juvenile growth rate. As adult size correlates negatively with temperature, an analysis of covariance was performed to separate the effects of temperature and maternal size. The result is that offspring size indeed correlates negatively with juvenile growth rate. Comparisons are made with field observation of several authors on seasonal variation of offspring size and alternative explanations are discussed. It is concluded that present experiments support the prediction of the theoretical models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to determine the presence of genotype by environment interaction (G × E) and to characterize the phenotypic plasticity of birth weight (BW), weaning weight (WW), postweaning weight gain (PWG) and yearling scrotal circumference (SC) in composite beef cattle using the reaction norms model with unknown covariate. The animals were born between 1995 and 2008 on 33 farms located throughout all Brazilian biomes between latitude -7 and -31, longitude -40 and -63. The contemporary group was chosen as the environmental descriptor, that is, the environmental covariate of the reaction norms. In general, higher estimates of direct heritability were observed in extreme favorable environments. The mean of direct heritability across the environmental gradient ranged from 0.05 to 0.51, 0.09 to 0.43, 0.01 to 0.43 and from 0.12 to 0.26 for BW, WW, PWG and SC, respectively. The variation in direct heritability observed indicates a different response to selection according to the environment in which the animals of the population are evaluated. The correlation between the level and slope of the reaction norm for BW and PWG was high, indicating that animals with higher average breeding values responded better to improvement in environmental conditions, a fact characterizing a scale of G × E. Low correlation between the intercept and slope was obtained for WW and SC, implying re-ranking of animals in different environments. Genetic variation exists in the sensitivity of animals to the environment, a fact that permits the selection of more plastic or robust genotypes in the population studied. Thus, the G × E is an important factor that should be considered in the genetic evaluation of the present population of composite beef cattle. © The Animal Consortium 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)